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ABSTRACT

A partially observable Markov process is a nathematical model
of a dynamic probabilistic system which consists of an underlying
Markov process obscured from direct observation by Imperfect output
channels. The observed output R(t) is stochastically related to
the Lnderlying state S(t) . This model, like the Markov model, is
applicable in the analysis of a wide range of sequential decision
problems.

The primary area of investigation in this report is the selec-
tion of a course of action from a set of alternatives using only the
information about the system which is available from the observable
outouts. Associated with the model is a cost structure. The decision-
maker may use the observed outputs to make inferences about thp under-
lying Marko- state and will be assessed rewards or penalties depending
on the true state of nature and on the action taken.

The state of knowledge vector s(t) summarizes all that is known
about the orobability of the system being in each of the underlying
staLes as a function of the observed outputs. The optimal policy
will specifv a course of action to be taken for each possible state
of knowledge s(t) tor all possible t. The policy depends on the
oacision-maker's knowledge of the underlying Markov state, on the
cost structure associated with the model, and on the criterion of
optimum used.

Dynamic programming techniques are shown to be of use in the
optimization of both transient and steady state pol.icies. The
analysis is conducted with the optional availability of a perfect
information channel at added cost. Computer programs were written
for policy zvdluation and optimization, and specific numerical
results are included in this report.
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INTr iODUCTION

One of the basic problems in science and engineering

is the construction of models whose mathematical belavlor

will approximate the physical behavior of real world sys-

tems. In the analysis of certain types of nondeterminrstic

systems, the Markov model has shown Itself Co be a very
I

useful tool, The "partially observable" Markov model Is

an extension wh)ch takes into account the effect of imper-

feet cservations of the state of the dynamic system.

The concept of "state" Is central to modelling. The

condition or state of a system may be specified by giving

the values of relevant parameters. For example, the state

of a gas may be specified by giving Its temperature, pressure,

and the enclosing volume. The state of a highway toll station

may be specified at &ry given instant by the number of col-

lection booths operating and the number of vehicles in each

queue. As time progresses, the parameters var; and the

system changes state, thereby exhibiting dynamic behavior.

The most general probabjilstic system would have the para-

meters taking a continuous allowable range of values, and

would allow the parameters to change at any instant in time.

This would require a continuous state and continuous time

probabilistic model to describe the system. If 2 is the

state of the system at time t, in general s(t) will depend

on the entire history of the system previous to time t.

-- 7.--
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Thus a statistical des'zription of the future of the system

will in general depend on both the present state at time t

and the complete history of the system previous tG time t.

1.1 The Markov PrQcess

If only knowledge of the present state, and not the

entire history, is necessary to ailcw statisticial descrip-

tion of the future of th.e stochastic system, the process is

Markovian. Although thit; is a severely restrictive assump-

tion, in actual fact manzy real world syste:ts may be accurately

modelled as Markov processes. A few prominent areas of Mar-

kov process application are marketing, inventory ýcntrol,

traffic, qualltý, control, equipment replacement, roating,

and portfolio investment.

To illustrate what the Markovian assumption e,..ails

consider the following example:

A housewife buys groceries at the same store cnce every

week. The store carries two brands of milk, A and B. The

state of tne system in a given week would be the brand of

milk she bought that week. The present week is time n,

and the probability she buys brand A at week n+l given her

histcry of purchases Is%

P~s(n~l)=A 1 s(n)=i, s(n-l)=J,.., s(O)=m]

where i,ja...m are either A or 13
depending on which brand she bought
that week.

The iarkovian assumption states that the above probabil-

Ity dependE only on which brand she purchased this week.



PIs(n+l)=A I s(n)=i,...S(O)=m] F[s(n+l)=Aj s(n)-i)

= p (n)

BA

p (n)

AAB

I ýp (n)BA

1i•ure 1 Merkov Marketing Model

The transition probability, p j(n), is the probability

that the state at Limt" n will be j if the state at time r.1.

was i. The system Is called time Invar..ant If pj(n)=plj

independent of n. For a descrete Ctate and time In-;i.iar.t

model with N states, N - tmnsition probabilities would Lcj

requireq, not all of which are independent.

1.2 The Part.tally Observable Process

A partially observable Markov proce.;s Is one which

must be observed through an imperfect oul.put channel. Some

examples of imperfect channels are: an imperfect meter, Lne

attwosphere carrying in a signal from outer space, and thu

ircomplet I~rspection of a manufactured procluct.

-9-
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true states of outputs
Markov process

Figure 2 Model of a Partially Observable Markov Process

The model consists of an underlytn&, Markov process

whA.ch, depending on its true state, sipplies values of

parameters to the output channels. The imperfect channels

operate oi, zhe input from the Harkov process and yield

outputs which in most cases do not allow the observer to

ascertain the exact underlying 'iarkov state. In fact, the
a

number of output readings, m, may not even eq al the number

of true states, k.

The Imperfec; shannel, like the underlying Markov

process, Is a stochastic process and can be described by

the probabilities. fIj(t), which are the probability of

output J at time t given that the true state was i.

-10-
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true Markov states outputs

Figure 3 A T-wo State Model Showing D.Ltput Channels

1.3 Reward Structure

Associated with the real ilfe system are decisions and

rewards. For example, a decision could be made as to the

true Markov state at time t. Various rewards ca. be defined.

Ll reward if true state is i and the observer
estimates that it is 1.

L : reward if true state is j and the observerestimates that it is i.

These rewards form the basis for evaluating the effect

which a given decision might have.

1.4 Dynamic inference

The partially observable Markov process is one of a

rather large class of systems which consist of one stochas-

tic proces& monitored through a second stochastic process.

- II -



Stochastic 1Stochastic output
Process Process - to

!i observer

•- feedback

Figure 4 More General "Partially Observarle Stocriastlc

Procesd' todel

In this more general model the process 1 supplies

statistical parameters to process i, which operates on

them before presenting observable parameters. Information

on variations in the parameters of process 1 must be gleaned

from the pattern of the observable parameters output from

process 2. The Infoxnation about process 1 obtained in

this manner is then used in decision-making and to predict

future developments. The general problem associated with

obtaining information about the underlying process is known

as "dynamic inference.05

Applications of partially observable irMarkov processez

may be found in many aruas. For example, the true value of

common stocks could be the underlying state with current

Wall Street price quotations as the "imperfect* output

variable. Cne might consider the quality of a manufactured

product as being the underlying state with results of

incomplete inspection supplying the "imperfect" vutput.

Another example, from the marketing area, might consist of

4
- 12 -
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a customer's brand preference as the underlying6 state,, ard

his latest purchase as the imperfect indicator.

1.5 Previous Investigations

Work has recently been done on various aspects of par-
4

tially observable Karkov processes by Drake, Kramer,ý ana

StoopesI. Drake and Kramer discussed formulation oA the

basic model and considered formation of the S vector, o:-

statistical state of knowledge vector, which in essence

summarizes all that is known about the probabilltle• cf the

underlying ;:arkov process being in each state at time t.

They considered methods of updating the S vector as new

data is received. Drake further considered various decoding

schemes on the observed outputs and related errors, as well

as information flow and associated costs on simple .wc

state symmetric mcdels.

Stoopes' main investigation was in extending a octtin6
policy formulated by Kelly7 whil-h entailed beLLIn6, on va.--

Ious input states a fraction of one's capital proportional

to the level of confidence about those input states.

1.6 Statement of Problem

This investigation concerns the optimization of policies

associated with physical systems which can be modelled as

"partially observable Markov pror sses." The underlying

Markov process can only be observed through a stochastic

output channel. Therefore, the future effect of decIsion:



made utilizing this 'Imperfect channel" information cannot

be stated exactly. Since the observer is dealing with imper-

fect data, he can only say with probability PA that the

effect of a given decision will be A and with probability

PB the effect of the same decision will be P. ?his compli-

cates the decision process.

Associated with the selection of a course of action

from a set, of alternatives is a cost structure. The decision

maker may use the observed outputs to make inferences about

thc ucndcrlyirng Markov state and will be assessed rewards or

penalties depending on the true state of nature and on the

action taken. The "optimum" policy will depend on the deci-

sion-maker's knowledge about the underlying Markov state,

on the cost strncture associated with the model, and on the

criterion of optimum used. There are several possible

criteria of a "good" decision. The decision may simply

be made so as to maximize the expected value of the reward,

or: the observer may wish to impose a ceiling on allowed

risk and maximize his expected reward wklle never risking

a loss of more than that ceiling. Alternately, some utility

function may be imposed upon tha rewards and the policy

chosen to maximize the expected utility oL' rewards. In

Drake's work, a brief introduction Lo tihe above problem

is found for a symmetric two state example. This report

is a continuation and extension of that introduction.

The major mathematical tochniqu-s used for policy

optimization are those of dyna&io programming which arc

-14-



coverej extensively in Pellman', and PtEllman "nd Dreyfur-:.

A dynamic programming algorithm for optimization of regular

Markov processes was developed by Poward 0 and extensive

work was done in the samc area by SchweitzerI. In thil

report, application Is found for thcene techniques in tlhr

area of partially observable Markov processes.

In many practic.al Situatiorns t•r,,.r" exists a waym ,

nearly perfect Informntion about the underlying Marko-

process--for a price. rherefore tthe analysis is conduct,,i

with the optional availability of a perfect Information

channel at an additional cost.

A two state Markov process monitored at descrete t1Le

intervals by a binary channel will be used to exemplify the

ideas presented in this report.

One might give this a phyý:ical interpretation from 'he

communications area. Consider that a communications sat l..

lite has been placed in orbit and is being used to convey

tranisoceanic messages. Unfortunately because of various

interference sources. the satellite may not receive

retransmit an intelligible signal. rherefore the desi•-ners

built into the satellite a check, whereby the quality oL

the received message at the sate2llite I- monitored. 'hen,

binary data is transmitted back to the sender at descrete

time intervals telling him whether the! received messajte

met or did not meet preset standards of quality.

Assuat: LiL it has been determined that the proct:ss

governing whether or not the satelilte receives an acer t-

able signal is essentially Markovi.-in with time invarlant

- 15 -



state transition probabilities. The binary signal the mon-

Itor returns to tne sender Is also affected by the Interfer-

ence and is therefore not fuijy reliable, but the conditional

probability distribution of outputs is known. The following

partially observable harkov process model is constructed by

the decision-maker.

p 1 1 2I

f 2 2P22k

Markov Process outputs from
generatinx binary data imperfect channel

state lo acceptable message received at satellite
state 2: unacceptable message received at satellite

Figure 5 Communications Example
I

The decision-maker can now use this model as an aid

in the evaluation of various policies, or courses of action.

Using the binary output data, Inferences can be made about

the signal quality at the satellite. The knowledge about

sIgnal quality can then be used along with the cost struc-

ture to evaluate the expected consequences of various courses

of action.

161
- 16 -
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Various alternatives might be available to the declslon-

maker. He might continue reFgular transmission, resend a

portion of the message, discontinue transmission for onc or

more time units, conduct additional tests of signal quality,

or build a new and different communications system.

Mar1ovian models have shown themselves to be very use-

ful in the past. The techiniques developed in this report

allow the extension of analytical methods for optimal

decision making to include the case of the V'arkov process

being "obscured" by an imperfect information channel.

- 17-



OPTIMAL TIME-DEPEN kNT POLICIES

When making a decisl.o,, an extremely useful quantity

to know is the total reward or cosi; thai. can be expected

as a consequence of the particular decision made. Dynastic

programming allows the calculation of future ex:pectcd util-

ity of rewards as i functlon of policy in sequ-ntial, ecisý.on

problems, and therefore allows the selection of a decision

to maximize total expected utility of rewards.

In sequential decision problems, decisions may be made

at certain points in time and each decision will, in 5-eneral,

carry with it implications which extend far into the future

and affect decis).ons 'as yet unmade. Likewise, what the

policy-maker intends to do in the future will affect his

present decision.

There are two basic techniques in cynamic proramning.

These involve solvin6 a problem in eltner "value oracc c.

"policy space." In this chapter the "value space" techni-

que is explained and is applied to partially observable

Markov processes. In Chapter III the *policy space" cLchni-

que will be employed in the determination of opt'i.' cl 4 zcz.

Consider the two state communications example from

Chapter I where the cobserver periodically receives Inmor-

mation on the reception qual1ty at the sat.3lite.

- 18-
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P22•

InformationSatel li te Reported ,t

"Reception Ground O bserver

Figure 6 Communications Example

Markov state lo message at satellite meets preset
standards

Markov state 2: message at satellite fails to meet
preset standards

Output l: Ground Observer receives signal--
"state 1"

Output. Zi Ground Observer receives signal--
"state 2"

The ground observer now has to make a decision on the

basis of the stochastically inaccurate output signals.

Assume first that he has only two options open:

1) Continue transmitting until next output is received

2) Stop transmitting and check again one time unit
later

This problem will be first approached in the tJme-

dependent case, That is, the observer doesn't have

- 19 -



unlimited access to the use of the satellite but must defin-

itely quit at some time n units into the future. it will

be convenient to measure one unit of time as the time between

output signals. When dynamic programming techniques are

applied in the analysis of processes which will terminate

at some specific time in the future, it is conventional to

call the termination time zero and measure time in reverse

of normal order. Thus, in this example, the current time

is n, and the process must terminate at time zero which is

n time units into the future. The time independent policy,

where the physical process terminates far into the future or

continues indefinitely, will be considered in Chapter III.

Inherent in the decision problem is a reward structure.

110: Utility of reward if he continues transmit-
ting and the underlying Markov state is 1

L2 2 : Utility of reward if he stops transmitting
and the underlying Markov state is 2

L12: Utility of reward if he continues transmit-
ting and the underlying Markov state is 2

L 2 1 s Utility of reward if he stops transmitting
and the underlying Markov state is 1.

The preceding problem uses a two state process with

two options allowed at each decision point. That type

problem will now be solved in general.

2.1 Notation

In computations to come the following shorthand nota-

tion will be useful:

-20 -



S(n)=x : Underlying Markov state at time n is x

R(n) : Output response at time n

To summarize the decision-makers's knowledge at

time n"
S x(n) = P[S(n)=x I R(n),R(n+l),R(n+2)...]

= probability that the underlying Markov
state is x at time n, given the past
history of observed outputs.

For an N state process, a "state of knowledge" vector

is defined:

& "n). S (n), s2 (n), ... a9N (n)

The Ostate of knowledge" vector summarizes
all that the observer knows about the process at
time n. For a two state process, s (n) is suffi-
cdent to determine the jinj vector because it is
known that the underlying Mhlkov state is either 1
or 2 and therefore s 2 (n) can be found from s 1 (n).

s 2 (n) = l-sl(n)

P,[s(n)] = P[R(n-l) = x I s(Ln]

= probability that the next output is x
given the current state of knowledge

The state of knowledge vector must be updated as new

information is received:

T x[S-ia.] updated state of knowledge at time n-i

given that the output at time n-i was x.
The new state of knowledge is a func-
tion of the old s and the decision-
maker sees R(n-l )before he must update

- 21 -



2.2 Prediction of Outputs

The probability distribution on the next output to be

received will prove useful. The state of knowledge vector

gives a probability distribution on the underlying Markov

state, and if the underlying Markov state were know to be

1, the probability of output j would be flie For the two

state case, the next output at time n-l is predicted to be

I or 2 with probabilities:

p 1 [Snr = sl(n) (Pllfll + P1 2 f 2 1 ) + s 2 (n) (P 2 2 f 21 + P2 1 fll)

P2 s[§ W = s1(n) (Pllfl2 + P1 2 f 2 2 ) + s 2 (n) (P 2 2 f 2 2 + P21fl2)

The above equations can be written in matrix form for

the two state case and then extended to the N state case.

Two state process:

P[ll Pl2 f 11  f12[P] (] F) =
P21 P2 2  f 2 1  f22

P[s(sn] = row matrix of probabilities of next
"- " output reading

= s(n) [P] [F] P I2[s(n)], P2 [s-nj

-22-



1; state process:

f f2 f

P 2 1
rpý=

LN1 ,, J N1 FL J

.- LLh I .... ,P ý_ j

If Aj is defined as the It" column of matrix CLA,

the component: of the P vector are simply written.

P sin) fP) F1] = a scalar

2.- Undatirig the State of Knowledge

The sta;- of knowledge vector changes with time and iZ

will be necessary to update it as new information is received.

Recall that time is to he measured in reverse order. The

carrent time is n and the process must terminate at time

zero which is n time units into the future. If the decision-

maker does not have the output readings available, his state

of knowledge vector would change with time as 'follows:

*(n-l) new state of knowledge vector if the decision-
maker does not have the output readings
available.

-23-
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For the ý_ state processt

i(n-l) s(n) [P1 = 4,n-l), [F](n-1)

ji (n-1) s 1 (n)pl 2 + s 2 (n)p 2 1

For the N state process the matrix equaticn Is the

same.

S= s(n)[P] (n-1), 2 (n- ),..., (n-i)

Now consider giving the decision-maker the advantage

of 6eeirg the output response R(n-l) before he musL- update

the state of knowledge vector. Given that output "I" has

been observed, the new state of knowledge vector can Loe

cGmputed to bet

T gnl=[s(n-1) g3iver. R(n-l)=il i(snl

Given out.put "i", the j- component of the new state

of knowledge vector is:

T1 ,j[s(nl = P[S(n-l)=J R(n-l)=i and s(n)]

PLS(n-1)=J and R(n-l)=i ___]

P[R(n-l)=i ;

I



TijL~in2 P[S(ri-1)I=j &nd ii(n-1)=i I Zn~i

- P[}(n-l4 L (n-Th=j and Ein)- PC3(rn-l)zj aij~L2

For a two state process, using the above relatlont

T s1(rAP 11 ' s2 )21 l

T1,[s~~l= I-T 1,js(n)] = S (n)pl, + s(n )P'2 f]214

[S (n)pl +S (n)p] f2 4

P2 Is~n) I

T22[~~i ~C.2.J = l-T -£s(n)pl, + (~n.p9

2,2~ ~ ~ ~ ~ [sni -T 2,1 s2 I2 2

The new state of' knowledge vector aln-Aý will ther.

depend on w~hat output Is observed at time ri-l.

-25-
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If the output at Lime n-l was 1:

s~-)= T I(sCM]j = . .,ýnI T1" 1. ) [

if the output at time n-l was -i

s(n-1) ý TZn) T1 = T,

The observer will receive an output reading "i" and

must update his state of knowledge s = T1 [s(n).. Even

if no output reading is available to the decision-maker,

his state of knowledge -till changes s(n-l) = JAn-l)

2.4 Policy Evaluation

If there are a number of options available to the

decision-maker for each value of Lhe state of knowledge

vector s(n), then a policy would specify which option (k)

to take for each possible s(n) for all n. The choice of

policies will usually be affected by the total expected

reward associated with each different policy.

The expected reward can be separated into two cate-

goriest immediate and future. The reward to be expected

during the currunt time unit only is known as Immediate

reward. Future reward is the expected reward in the aggre-

gate of all future time.

"This grouping of rewards forms the basis of the dynamic

progr-air-ig equations to be used throughout the remainder

of this report.

- 26 -



(Total expected reward Immediate expected

wit n time ( reward in the

units reainlinrg (current urit of time

/ Total expected future

reward with n-i

\ time remalir I.g

Tihe expected immediate re-nrd will be affected by the

option (,) which the decision-maker exercizes at time n and

by his state f knowlcdge.

q k [sL )] = Immediate expected reward in the current
unit of time as a functior of the state
of knowledge if option k is exercized.

Continuing with the two state process, recall Lhat

at present only two options are allowed. In general terms

those two options are:

k=1 : estimate underlying Markov state 1 as the
current Markov state and act accordingly

k=2 : estimate underlying Markov state 2 as rhe
current Markov state and act accordingly

For the eommunications example, these options are:

k=l : continue transmitting until the next output

is received

k=2 stup transmitting and check again one time
unit later

- 27-



The Immediate expected earnings In the current unit

of time ares

2

q(_ [Lnil = sl(n)Lk n

where Lkj = earnings if estimate K rnd true
state is j

The totc.] expucted earnirns are gElven by the expres-

sion below for a fixed policy.

Fn[s(n)r = total expected earnings with n time left as a
function of the current state of knowledge.

,- In~mediate\ + Expected earnings) .

s(n)] = expected J + In time n-i given. Ptsn)]

(earnintgs/ i R(n-l) = 1 /

E(Expected earnings)
+ with time n-i / .2[s(n)]

given li(n-l)=Z--

F n s(n)] q;, .•.s(n + Pl1[s(n)] Fn'-LT 1 (s(n))] I

+ P 2 [ssn)] fn-l [I(s(sn))1

It is possible to solve thIs functional equation for

the total expected reward and thus estimate the effect of

a given policy choice.

2.5 Policy Optimization

To optimize the decision, a criterion of "optimum"

- 28 -



must first be chosen. Tne rewards earned may be in the

for- of money, time, material goods, etc. and the reward,

L1j, Is really a utility or index of usefulness to the

decislon-maker. if 'optimum" means waximizing the total

expected reward, or total expectedi utility, then dynamic

programming will yield on optimum oolicy by solving the

functional equation below subject to the Initial conditions

F O[s_ý. specified by the decislon-malker.

Fn[s(nj = maximum ( qk[s(n)] + P1 [s(n)]F"-'T[(s-nf)

+ PE[s(rn3 J

where k represents the options avaijable at time n.

1b
Bellman'sI principle of optimality states that the

computed solution will in fact be the best policy based

on the criterion of maximizing expected utility.

An optimal policy has the property that
whatever the initial state and Initial deci-
sion are, the rezaining decisions must con-
stitute an optimal policy with regard to the
state resulting from the first decision.

in solving the functional equations Bellman's principle

is used in the following manner. Subject to the initial

states and decisions ý' L•(O)] is specified. Then F l[s(l_>

is found using the functional equation relation and the
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values FCCsjG]. F2Cs(jI] Ic then found from s l Jsl• and

so on. Each time the .ieclslon at time n is made consistent

with decisions already made.

2.6 Perfect Znfoýat ion

In many practical situations, perfect or nearly per-

fect inforTLation about the undezlytn.; Markov state can be

obtained at increased expense. With this perlect informa-

tion channel at a net cost. of an additional "A' dollars,

there is a third option open.

If the perfect information channel is usc at tilme n

the state of knowledge vector becomes:

s_•--) -. 4 with probability sl(n)

Usi;j option 3 at tim. n, the associated total expected

reward .bcfore the channel is used is given below.

-A + s1(n)L + 1 s2(r)L 2 2

+ sin) Pj 1[iLOir nLT~ (11 ) I

+ sl(n) P(0.-l[ 1Q)]
4 s(1.) Pp I[_!F'r"[T1 (OA!)] /

2 1

+ s_'(n) pjO.1iF3 t.(~~ r
4-

4



Therefore, the equations to be sol'ed for the optimum

pol.'cy rirei

k=l t expected reward If optlon 1 is
cxercized

Fn [sR~n] - nfi k= expected reward If option 2 Is
exercized

k= :expected reward if perfect Infor-
mation channel is used

6=i : s 1 (n)L 1 ] 1 s 2 (n)L 1

+ P [s(n)]Fn-l[T, [•. L ]J
n-

+P,[s(n)JF - Ti{jJ4

k=2 i sI(njL ; + s2(n)L22

+ P I s A.• ] Fn-1 [ T, [Zsjan_)]

+ PLs___ 2L~ý

Fn[!in] = max k=_3 : -A + sI(n)L1 1 + s 2 (n)L 2 2

+ s](n) P [1. 0C]Fn- 1iT [ OL. ]

+ s I(n) P [Oc!]F n- 1LT,,.1

+ s2(n) P2[OA1 ]Fn-'[T 0 11

Comparilng options 1 and Z, the decision-maker will

choose option 1 over option 2, i.e. estimate the underlying

Markov state as 1 instead of Z and act accordingly if:
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(oprtlcn 1 expected\ (opton 2 expected

reward ) ( re ward/

s (n)Ll + s 2 (n)L1 . • sl(n)L2 1  s

sl (n)LI + fl-S 1 (n)!Ll- s S1 (n)L 2 1 + [1-s 1 (n)]L22

s1 (n) • L2 2 - L1 2

+ L2 2 - Ll: " L-I

Therefore if only options 1 and 2 are available the

solution is trivial and made on the basis of highest Imme-

dlate expected return, q[_Lj•]. Adding option 3 has the

effect of aLllowing him to "InvestO A dollars now, In hope

of getting higher overall future returns.

Comparing options 1 and 3, the decision-maker will

estimate 1 instead of using the perfec-t channel (option 3)

if:

/"A + sl(n)L + s 2 (njL2 2

sl(ri)Ll+S,(n)Ll 2  + Fi(n) FI[I O]Fn'I[T2 [l, 1]

+ s 2 (n) P2 [0.l]F' [T

The equality condition abive can be interpreted as the

value of s(n) for which the decision-maker is indifferent
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m-I

between options 1 and 3. If s (n) is defined as the value

of sI(n) for which the decision-maker is indifferent between

option 1 and 3, the preceding equatlon can be solved for

s5(n) and then option 1 will be chosen over option ) if

sl(n) t• (n).

Similarly, cozaparing options 2 and 3, option 2 will be

preferred over option 3 if s%(n) S sr•*n).

Summarizing, using the criterion of maximum expected

utility of rewards, the optimal decision will be:

a) estimate state 1 ar.d L2
act accordingly if s 1 (n) • "

L1 1 +L 2 -L1 2 -L 2 1

and sl(n) s l(n)

b) estimate state 2 and L,2-L1.
act accordingly if sl(n) <

L +L -LI-L21
11 2ZK 2

and sl(n) I Sl*(n)

c) reascertain true state using per fert channel i )
doesn't satisfy either a) or b).

S.7 Additional Partial Information

A further practical gene.alization can be made by

assuming that the observer has a enoice of using a second

imperfect channel whic'i is better than the first, costs

"S" dollars more per usage, but gtill isn't perfect. :he

decision-maker hR. also to decide n~ow whether the better

channel is worth thne extra money for any possible stare
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of Knowledge caid time (n).

To answer tr1i: question, ie aado a fourth cption to h1i

functional equaticn. Tho no;, •.'] Matrix 7)-.'espondIrg to

the new output channel affects the updatlrg of the state cf

knowledge if th- nere crhannel is used. Therefore, define a

net: quantlty Ti'- tc represent the new state of knowlejze

after the output reading "i" from tnc new crannel has been

considered.

Under optlmi; ;, at tl.,e n:

_,(n *,expected earnirns in ti.ae n If inul-
r 4 S s(n) cation I is received from the new

(channel

S .(n) *expected earrnlngs In tioe n if indl•
cation 2 is received from tne new
(channel

F- -, 0()x + s Cn)Y

+PJT1 FaLnl IF"'-" T La T: L anj. J I
. .: . 1 ?.'[.L. .h Ip t2 +LJ2

4 2 - ..
+ P T[T"n 3nF.j] ± P[[T7 LaLn_ ,,I

2

4
-34- 4



Z. Eaml

The value of this technique is that a solution may be

found for any length of time, n, remaining. liowever, this

becomes Impractical as n becomes large. Fortunately thle

equations will converge on an optimal nolicy which, for

large n, Is independent of n. This "steady state" policy

may become discernible for very small n in some problems.

The next chapter presents a method for obtaining the "steady

state" opti'mal policy directly.

Consider a numerical example of the two state problem.

A computer program was qritten to solve the general two

state problem and is included in Appendix I.

The observer has constructed a 2 state model dith par-

ameters given and has the option of using a perfect channel

or estimating the underlying Markov state and acting accord-

Ingly.

The probabilities describing the underlying process

and the output channels are:

The associated revards are:

L=[ 
3 -2

-6 4
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A = cost of use of perfect information output channel

= 5 ' loss of immediate earnings for one time unit

F°[s(O)' = 0.G for all

This could be the previous communications satellite

example with the "perfect" information being obtained by

using one un).t of time to send a special test message to

the satellite. The test message would be returned to the

sender and from it he could glean the "perfect" information.

The computational results are show in figure 7.

optimal policy is :

0 S s 1 (n) .* : estimate underlying Markov state 2
and act accordingly

.4 s 1. : estimate underlying Markov state 1
and act accordingly

The perfect information channel is never used in the

optimal policy. In relation to the other rewards, the cost

of using the perfect information channel was too hiFh. This

problem is then equivalent to havirg only the op.,Ivn and 2.

The;re is a growth pattern emerging as time (n) !,icreases.

In figure 7, the curves for Fn[X ] tnd toward a fixed

shape and the separation between Fn[s(n)] and Fn-l[s(n-l•]

appears to be approaching 2.29 as n increases. The optimal

policy is independent of Lime (n).

In the previous example the cost of perfect information
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Figure 7
Total Expectmid Earninags

UsiAng Optime1 Policy

26.:)

24,.0 24. 08 5 3 3

22.0~ 1.~
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was too high to warrant usage of tne "noiseless" channel.

More illustrative results are obtained if the cost of

perfect information is reduced to b#:

A t- loss of immediate earnings for one time unit.

Thp r•.l•uts ef the calculation-s are given in figure b.

The optimal policy is:

n=1"

C.0 < sl(n) C 0.4 estimate state 2 and act accor-
dingly

0.4 5 s!(n) - 1.0 estimate state I and act
accordingly

n= 2:

0. 0 : s (n) S 0.4 estimate state 2 and act
accordingly

0)4 A s (n)!k 1.0 estimate state 1 and act
accordingly

n=3.4, 9, 10,

0.0 S sl(n) • .38 estimate state 2 and act
accordingly

.38 < s1 (n) < .42 use perfect information source

.42: sl(n) 5 1.0 estimate state 1 and act
accordingly

Here again a growth pattern on expected earnings is

becoming discernible as n increases. The separation (gain)'



with Perfect Inforlmation
krailable at a Ressoczable

26.0 coot
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between the Fn[s(r,] and F"'-s(n-I) cui-ves appears to be

approachink; 2.30 as n increases. Notice that when reason-

ably priced perfect Information became available the growth

of expected earnings as a function of time apparently

increased slightly from 2.29 t2 2.30.

2.9 Comments

This particular solution technique is useful in deter-

mining optimal policies associated with partially observable

Ma:iKov processes for small time(n). The functional equa-

tions which must be solved for the optimal policies are of

the general form given below wheru k(n) is the policy choice

at time n.

F ks(n) q (s&n)) + P £i~J9F'[T ts(n) 1]

h'ile it is theoretically possible to obtain a solution

to tne above equation, it may be computationaily infeasible,

It is relatively easy and fast to obtain a numerical solu-

tion for the two state partially observable Markov process,

but increasing the system to even five states mp-f be pro-

hibitive. A good deal of the strength of this technique

depends on the analynt's ability to model the real world

system with a few pertinent states.

This technique also becomes impractical when there is

a large time (n) involved. The next chapter deals with the

question of the existence of a steady state policy for a

- 40 -
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partially observable Markovian system and methods of deter-

mining it without iteratively solving the functional

equations introduced previously for ever Increasing value•

nf time.



OPiAPTb. i iii

QP7i1Ai STEADY SiTA-_ POLIOY U1,EAKINAlIQ

in the chapter on optimal time dependent polic.ies, as

time F-rs-w '-rz t hp expf-tred eArninzs -e~med to conven'ze

on a discenlible growtr pattern and tre policy was apparently

becoming independent of the time (n) for large n. in many

physical zituatlons the time (n) which remains for the real

world system to operate is large and sometimes even unknown.

In those two sitoations it is not feasible to use the time

dependent solution technique for cpLImal policy determination.

The question ol the cxistance of a steady state policy and

a merhod of determinIng it becomes paramount.

The examples of Chapter 11 appeared to show the expected

earnings, Fn[s(n)], convergirng on a growth pattern In the

following manner fzr large time n.

ma kx -k ! n- 1 , j[

Fn[s(njL]--- v[sn)]j + nG (large n)

where %:is(n)] is Interprete• as settirng the
steýay state shape of the [FjIL] curves ar,
O, gain, is the steady state growth per unit
time.

3.1 The State of Knowledge as a Continuous State Markcv

Process

To investigate the growth pattern of expected earnings,
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it will be necessary to alter the concept of a partially

observable Markov process model. Formerly It was Interpreted

as a descrete 1; state Markov process with stochastic output

cnannels. icfocus now on the state of Knowledge vector, s(n).

it has n components, s,(n), which are conntralne& by:

s s~n) --; 1 Zs(n = 1
I

The state of knowledge vector has n-I independent

components and may thus be represented as a point in an n-I

dimensional space. The state of knowledge vector for a

partially observable Markov process model is In fact the

state variable for a continuous state Markov process.

Consider a three state underlying process with s(n)

= ei(n), s2(n), s 3 (n). Since s-(n) = l-s (n)-s,(n)- , t. en

sl(n) and s (n) describe the observerts state of knowledge.

* ~s~n Istin I-n

s 2 (.)-

Figure 9 Contlnuous State 5pace
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With probability Pi [ s(n) , it will be transformattion

T i Is (n ) w h ich d escr ibers the nc ew stat e in t e rm s o f th e o re-

v io u s s t a t e , sn) . S in c e t h e t san s it i o n p ro b a b i l i ty d e p e n d s

only on the current state, the Markov assumption is satisfied.

it happens that the state of knowledge is now also the state

variable of a continuous state Markov process.

3. Steady .Late ,ain

Let h[sn_] be the probability density function on

what the observer's state of knowledge will be at time n

f&r Into the future, giver some initial state of knowledge.

A completely ei-godXc Markov process is one whose limiting

probability density function, h[s•j.], for n far into the

future, is Independent of tie distribution of the starting

state of knowledge.

The continuous state Markov process which has s(n) as

its stte variable cannot be considered to be coimpletely

ergodic. Suppose the Initial state of knowledge vector for

a two state partially observable process were:

s ( n ) = ,0 ' 1 - ca

where co = a rational number

Note that the initial state of knowledge is precisely speci-

fied such that the initial density consists solely of an

impulse at the point sIpn) = co. As time progresses and

the statA of knowledge is repeatedly updated, s(n) will

- 44-



always remain a vector whose components are rational numbers,

by the nature cf the Transform applied. rherefore, the

limiting probability density function or. the state of n-now-

iedg4 will be nonzero only at a set of points selecteo from

the rational numbers. Alternately, suppose that the !nitial

distribution of the state of knowledge is descr-ibe-a by a

continuous density "unction. ri-ilultling density h'sýn_]

for such an initial state of knowledge distribution will

be nonzero at points both inside and outside the set of

r-ationnI numbers. Thus, the process Is not copictely

ergodic.

Ka:4llnK investigates toe limiting steady state distri-

bution in similar problems. A llmitlng density, ihis__'],

may exist for the cLaos of initial dernitles which are

continious over some range of the allowable _ Drake

presents a method of computing the limiting densitby functicon

for an arbitrary continuous Initial density.

The steady state gain, * , Inr a ý,Iven polcy4 v(n;),

could be calculated using the followirg relation. Anot;ner

method of determining the gain, Gk , is presented in the next

section.

S •h[s(n)] qkfs(n)I dsjnj

s( n)

3.3 Optimal Steady State Policy Determination

"The existence of steady state gain implies that

expected earnings, F [s(n)], converge on a g<rcwth patterr,
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for large n, and that a steady state optimal policy exists.

The optimal steady state policy coul(I be found by maxni1zing

the gain 3.

max 3 k ptimal policy,
k

A method of policy optimization whicrh Is based on gair:

maximization was developed by H)ward for use on defcrete state

Markov syst- s. His algorithm can be ada ted for use in

optimal policy determination on partially observable Markov

process -models.

Beginning with the basic equation for expected earningsi

Fn[s(n)1 = max _qk-n 4 P ik s(n)]FIn-lr[s(n]]k
k I Isn~

- v[_s(n)l + nG for n large

where 3 = steady state gain and v[ssj.•]

can be interpreted as InItializing and

setting the s~iape of the steady state

expected eazmrngs curve 7n[sinj]

Substituting the steady state form into the basic

equation for a fixed (not necessarily optimal) policy, k:

v k + nGk

= k[•_til • k[s~l_%-'v vktis~ia]] (n-1)'•;

= qk nfrjL + (n-]))k n_,_

4-4*~)



.q•_; ] s n) _]v T,k

=q, taLLj -v ~s(n)J I )P Ls Vi) v

3 • =gain usirg a fixed policy k

Solution of th.e above equation would yield the gain,

I, and the curve vtsjj for a fixea policy. To solve the

equation by com:,uter, it is necessary to quantize the

vfs(_•,L curve Intr. X points. Then these are a set of

simultaneous equations and M+1 unknowns. The MŽ-l unknowns

are the V, from v[s(n)• and 1 from S. Consider -- 'din, a

quantity, c, to each point of the viiij) curv,.

3 = q[s(n)]-[v[s(n)]+c] t P Pi[s£n)1[v[Tits(n)f]],c]Oa

qfs~n ]-v[s(n)]-c + ZPiPs(n)]c n ZPi Jsn v ,L :
i a

but P Fs(n)lc = c ZPi s(n : c

qis(n)l -vis(n)] + i[siq v[-rI sjlj,]

Notice that tbis is the same equation ($) bac i .

This implies that the absolute level of *he vii Lurvu

cannot be determined from these eouations. rhc refcare t(

allow solution, arbitrarily fix one point on the curv.
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As will be shown later, only the relative value of the

v[s(n)' curve (i.e. the shape) is necessary. The M equa-

tions and M unknowns may be solved for the gain, ,, and

v[sEnj] subject to the above stipulation.

Howard's algorithm contfins a policy improvement routine

which rapidly converges on the optimal policy and thus it

Is necessary to solve the set of M equations for only a few

policies. Later In this chapter, a method for checking the

"optimal" solution is introduced so that errors introduced

in solving the many simultaneous equations can be detected

and corrected. Also, a technique for avoiding the need to

solve the M simultaneous equations was developed by Schweitzer

and will be introduced.

?or a fixed policy k, the following Is solved for 0

and vk [ s(nJ].

k = k
G k qk[S l "v rs(n)1 + v[PP[

I

The next step is to use the Gk and v k[s(n)] obtained

to find a better policy. Aecall that Lhe optimum polic,'

maxl mixed:

Fn[&LtiJ = max [Xa I Z+ ~ Ia2n~ Dk(n) qk(n)- I

4o



in the steady state:

v s( • ÷ "o
Jpt

-max + tr.l [T[lyrlo }
-max kk ks-- ÷n-"opt+ s7 1-Vpt,+n j

I

,Lnce here is the gain asscozate!, Wl•i, the opt.lij::a

policy, it is not a function of k and an equvalent test

quantity to be maximized as a function of pollcy (k) is,

TEST [s(n)] = qk[ ] + ZP1. k[nv]opt 1 [

3ecause Pj LLn 1, any ad'itive constant in

v opt, iTj]s(n)] would not affect the test quantItj and thiere-

fore conly relative values of vopt [T IS nl] are needed.

Hiws.L.dis algorithm says that maximizing the test

quartity u-ing v[sin) from some arbitrary policy (not

necessarily optimal) will always yield a ne.; policy which

is at least as good as the old trbitrary one and that an

optimal policy can be found in the manner lliustrated in

figure 10.
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select an

Iarbitrary policy k

use Pi and qk[.L(an] for the fixed

policy to solve

k =qk[s (n)1-v rs-n'1 + __1_[s-•]v [T Ls--

for the relative values v k[ss ] and gain Gk

1___
ustng v k ]s(n)i, find the policy k' which

maxitizes TEST [sEn] for all values of s(n).

TEST [4il]=qs[n)] ÷ ' Ls(n) ]vA[T [jLSn1]

(k' is at least as good! a policy as k)

If k=k', it is the optimal policy

If kAk', then return to 2 replacing k by k,.

P I X [snl by pi k .L.ial, and qk [_S.§ ] by qC,[L.-ln]

ESIT71P ITE~iATIt 1T),

Figure 10 LDetermination of the Optimal -)teady StaLe

Pol i ny
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By refocusing attention from the Interpretation of a

partially observable Markov process as an underlying descroc'

Markov process plus o*:tnut chan-nels, it is seen tnat the

state of knowledge vector is the state variable of r con-

tlnuus state Narkov process. The optimal policy can be

found utilizing a digital computer and Howard's al;.orithm

for descrete Markov processes. How close the digital solu-

tion is to the continuous state solution remains to be -c<r,.

Experience with descrete state problems has shown

Howard's algorithm to be computationally efficient ana that

the sequence of policies generated iteratively will usually

converge in a small number of cycles. The convergence may

be hastened by selecting the arbitrary initial policy to be

as close to optimal as possible. The decision-maker could

incorporate all of his prior feelings into the initýi 1
policy although it is not necessary to do so.

3.4 Proof of Policy Convergence and Ootimization

A proof, adapted from Howard's work, is now offereP

showing that the policy which is converged upon is in fact

the one with the highest gain of all possible polici(s,

Suppose that an initial policy A has been operatced

upon and the policy improvement routine has produced r.

policy B which is different from A.

Prove : R k IA

since B was chosen over At

TESTB s(n)] I TESTA r[nj] for all s(n)
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+ 
[s~n)) v (

Le , ~[s(n) l rESrB(ZL!: 
- TE T~ j j

A F.1]JIH .Lr

8B s(n; far all s(n)

VIEre 3 Is tne imprcvement In the
test quantity t1- at the PO2.IcY lmprc~vement
routine was able to moake.

The exp.-essions for Z; and GAare:

-13

fS ))_ ,[s(n'jj . A A['__

Subtracting G A from G.and rearran~-Angs

G B...A4 V3BsL) ]IVA[§.Ln] q ___ ___

- Z~i~ts(n) ]vArT)iLn
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introducing IB(n):

•••v [s~in) -vA(sll = •~n)al

. •"•Lgsin•ljvA[ [s (n)• ]

B- A 7-.-5G +v La.L -v

A L

Define:

B A

A v k a(n )l _ __[s_. l. -v [ _

Substituting the definlitons into the previnus equatlicr"

G• v ,+s.n ]-.,-[s(n)] 1 A PB (s(n)],v_. J,1]]

1

"1)r sn)&r)i -

Note that the above is Identical in form to:



Recall that the steady state probability density, hs(r4],

was related to 5 In the following manner:

3) GG f q jd- l

So the solution faraG in equation is:

4) &G [ hBE.s{~n I 3"s.nJI1 dsjn)

Since:

'Ass~ml i o for all sjfl

and a property of all probability density functions is:

hB [s(n)i] 1 0 for all gflj

Therefore:

AGa 0

A new policy obtained using the algorithm has at least

as high a steady state gain as the old policy. 5,urthermore,

it is impossible for a policy with higher steady sta'te gain

to exist and not be discovered ultimately by the iterative

routine,

-I



Assume for two policies X and Y, that 7, > 3X tut ttnt

the iteration routine has ccnvergecd cn X.

Since X was chosen cver Y in the policy Improvement

routine and the policy X set the test policy just rri';r to

convergence:

TEST >s'n)• _ TEsTY •]

qy[s-n)] + PI PiY[s(n)uvx([s-tD-L

i
iX s(n)] T TE.T X(~. ] - rnrTE tsns)ri 0
Y

By the method of the previous proof:

AG = G X - OY ? 0

Since the initial assumption was that ;Y :F this

is a direct contradiction and hence it is impossible for the

algorithm to ultimately converge or. a policy wnich has less

than optimal gain.

3,5 Reinterpretation of Relative Values

It is not immediately obvious that the relative values,

v[rsn)], which are obtained for one fixed policy, should bc

useful 14! policy Improvement. To obtain some insight into
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thrl matter and into the general concept of steady state

policy determination, consider a "pcllcy space" which con-

sists of all :onceivable policies. For any policy, k, the

state of knowledge vector, s(n), can undergo certain trars-

formations, TI[s~i•], to obtain a new "state of knowledge"

vector. The variables that are a function of policy k, are

the immediate earnings, Qk~ js , and the probabilities

that specific transformatiors are applied1, PF (k [ )]. If

we have M possible transformations, there are M independent

functions In general that are set by the policy. There

are M-1 Independent Pksjr.1] and one qk(s(n)]. A policy

flixes the decision to be made for each s(n)° Consider one

specific but arntrary s(n). For this value of s(n), the

M independent parameters associated with the decision would

specify a point in a !Auclldean M-space. Thus, every con-

ceivable decision could be represented by a point In this

"decision space*. Only certain of those points would rep-

resent allowable decisions.

Consider two decisions, A and n, with points DA and D.

in the decision space for a particular s_!.. Now consider

all possible decisions lying on the line segment joining DA

and DB in the decision space. Pick a new decision on that

line segment and define it to be a "randomization" of A

and B. If r is the randomization parameter and AB Is tne

randomized decision, the new variables are related to the

A and B variables thusly.
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qA;r~si rr = mjstn) - - i-~a•

"The gains of policies A and £ are:

GA = AL qA-s/li•

The gain of the rar.domized policy is:

(r) [hA r ]q_ AR rs--)

where

A-B Arh B ~rstn) = rhBj ; (1-r)n [s(n)]

lielatini; this back to policy improvement, consider

policy A as the initial policy and plc•c" AB as the policy

being tested.

e [r,s(n)] = imnnj-vemenit in test liantity

= q - q A[sLjr.

+ E iBrA'Lr sn)vA T 1s]

- p [sL.I vA r



A[r, s(n.. = rq,[s(n)] 1(-r) qF,[sar.] -A[s(n)

+ •(rP i[s(n)] j J-r) A~sLn]) v L•r i)]
A-_I

" E •tA~sf•]vA~r-l ]

F A

= 7 Fpl~~k AA T [sL=n ]"

-A B[r,s(n] =r rV sf _Lai

=r h Crsfn- A

Now let the randomized decision approach the oxiginal

decision. Divide oy r and take the limIt as r--*C.

11 GA (r 7A tG(r) f . sB) *"s(n)]ds(n)
i,0 0 r ýbr IhA[__ 1 A

Since 6B[s=n] is the improvement in the test quantity

of the policy improvement routine if decision B Is substi-

tuted for original decision A, and since hA[s(n)J_] for

all i , then finaing the decision B which gives maximum
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test quantity improvement is equivalent to finding:

max bGAE(r)

6r

For a given policy A, the algoritnm computes (for

each B) the directional derivatIve, evaluated at A, of

gain from A to B in decision space. It then selects as the

new policy the one with the highest directional derivative

of gain. If A ib the optimal policy then all tne directional

derivatives eviluated at A will he less than or equal to zero.

With this interpretation of what the policy Improvement

routine does, it becomes clearer why the relative values,

v[s(n)] at the old policy A are useful. They determine

AZ5jan)] which in turn is closely related to the directional

derivative of gain evaluated at A.

3.6 Exampl

Using the technique Just developed for steady state

solution for the optimal policy, consider the niurerical

example Introduced in Chapter II.

.9 .I .9 .i
[ ]= [ ] =

.4 .6 .3 .7

A = cost of use of the perfect information channel.

A = + loss of immediate earnings for one time unit.
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F [s(_O)] = C for all L01

A computer program has been written to find the steady

state gain, relative valies, and optimal policy for a two

state partially obserbable Markov process and is included

in Appendix II.

In this example the decision-maker has three crtIons

open to him.

option 1 : continue Lransmitting until the next output
is received

option : stop transmitting and check again one time
unit later

option 3 z use perfect information channel

Recall that in Chapter II it was found that the cost

of perfect Information was too high to warrant use of the

"noiseless" channel. This was found also to be true for

the steady state policy here. The results are given in

Table I and Figure 11 provideg a graphical comparison of

the steady state relative values and the F 1iO[sý )] expected

earnings curve found in Chapter II. They are almost iden-

tical in shape. By looking at the transient expected

earnings, the gain was predicted to be about 2.29 anid th-ý

steady state gain was found to be 2.29897 using the computer

program of Appendix II and the techniques introduced in this

chapter. With the cost of perfect information reduced tc a

reasonable level the example was reworked.
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TABLE I

EXAMPLE RESULTS

With no perfect information channel available the gain

In steady rtate was:

G 2.29392

The relative values and decisLons aret

sl(n) v(sn) Decision (n) v(s(n)) Dacision

C.00 +0.21560 .5,: - . C._ )41

.02 -0.01476 2 . -2.•bi4 1

.0 -. 22287 .50 -. 9431 1

.06 -0.39100 .56 - .69b16 1

-0.59865 2 .60 -u.04197

.10 -0.77769 2 .6 -1.53330 1

.12 -C,98507 2 .64 -2.4Ž463 1

.14 -1.27914 2 .66 -2.-24c44 1

.16 -1.41860 2 .62 -2.]/952 1

,1b -1,62406 2 .70 -?.05?o7 1

.20 -1.72908 2 .7z -2. 00757 1

_2" -1.93353 2 .74 -i.t9419 1

.24 -2.14215 2 .76 -1.7206C 1

.26 -2.36346 2 .78 -1.01142 1

.28 -2.58545 2 .C, -1.5-021 1

.30 -2.7425b 2 .b -1.47"Oj i

.32 -2.99491 2 .64 -1.19940 1

.34 -3.19564 2 .86 -i.C5o659 1

.36 -3.39637 2 .86 -0.93b3c 1

.38 -3.62377 2 .90 -0.76434

.4o -3.82286 1 or 2 .92 -0.03339 1

.42 -3,72!95 1 .94 -0.35545 1

.44 -3.43766 1 .96 -c.2496: 1

.46 -3.36893 1 .9o -C.'-9156 1

.48 -3.26575 1 1. -C.00000 1

.50 -3.1625? 1 4- 61 -
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PuAJ3LL II

EXAMPLE RESULjT

With perfect information available the gain in steady

state was:

G = 2.29958

The relative values anr aec:,Ions are:

s 1 (n) v(sCn)) Decision s 1 (n) v(s(n)) Decision

0.00 +0.1 b609 *.5- U.500 4
.02 -0. ,44 Z .54 - ,94,554 1

.04 -0.-5055 .56 )

.C6 -0.41867 2 .5d -•.74047 1

.06 -0.62634 2 .6c -2.66937 1

.10 -0.80534 .62 -4.560o9 1

.1I -1.01271 2 .64 -L.45[Cl 1

.14 -1.30 6 7u 2 .66 -,. o706 1

.16 -1.44621 .68 -. 15612 I

.1i -1.65166 .70 -. 06446 1

.20 -1.7566? 2 .72 -. 03414 1

-1.96112 2 .74 -I.9,c74 1

.24 -2.279652 .76 -1.75335 1

,6 - 2, .78 -1.63796 1
.2t -2.130 2.60 -1.5b673 i

.30 -2.7701) 2 .2 -1. 49g,8CI

.32 -3.02245 2 .d4 -1. 17oZ 1

.34 -3.2231? 2 .66 -i.,-, 4 ,O 1

.36 -3.42389 2 .oh -C. )1o I

.38 -3.65127 2 .ý0 -0.76979 1

.40 -3.81191 3 .92 -0.65884 i

.42 -3.74944 1 .94 -0.41093 1

.44 -3.4597? 1 .96 -0.27510 1

.•6 -3.39098 1 . 90 -0.11796 I

.46 -3.28774 1 1.00 -0.00000 1

,50 -3.19451 1
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A = cost of use of perfect information channel.
= loss of nimediate earnings for one time unit.

The steady, state gain, relative vajles, and poý cy are

given in Tabte 'I and Figure i, provides a Fraphical ccmpar-

ison of steady stats relative valuesr and F the

expected earnings found when the same example was worked

in Chaitc:" ij. Again trhc curvcs are ncarly identical In

shape an. t'ie steady," state :aln of 2.,9ý'9 Is near the ,..30

previously predIcted. The results obtained btY the two

different techniques support eacr, other. Notice that the

availa'-illty of perfect Infomastion Increased the gain.

If finer precision is desired in the range of s~n)

where a chang.e of "best option" taVkes place, a finer grid.

could be used in that region. That Is, in breaking the

continuous s(n) vector Into *iescrete polnts, make more

divisions in regions of particular Interest.

3.7 Verifying the Numerically Determined Polqc.,'

Recause the computer solution Invoimts a deocrete

approximation to the continuous sjnj vector, the nume21-

cally produced *optimal" solution could vary from the txrut.

optimal solution. To check on the acciracy of the numerical

solution, one might vary the number of descrete points used

to approximate the continuous vector and note the effect

this has on the solution. A much better technique is to

test the steady state solution in question by use of the ti-De-

dependent techniques of Chapter I1. Hecall that the observer

specifies some
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In£•L•al expected earnings, FO~s•O)]_ and the time-dependent.

techniiques of Chapter II compute F1 [s.E.UIJ and so forth

IterativelY. The steady state relattie values were inter-

preted as specifying the shape of the Fn(s(n)] expected

earnings curve for n large, Therefore If the true steady

state relative values, v[ain were used as the Initial

expected earnings F0[s(0)], then FI s(1)] should be simply

F'[fs] pPlus the steady state gain.

F _£ i F J , 0 = v[s.n._ ) ÷

This provides a check on the numerical steady state

policy which may be in question.

Figure 13 shows the result of such a check which was

run on the example which has been used throughout this

report.

"3.3 Computational ConsIderatIon_ _

Schweitzer10 developed ).n improvement on Howard's

algorithm for descrate state Markov processes which makes

it computationally more practical for problems with a large

number of states. Normally the policy improvemer.t portion

of the routine is used on all of the states before solving

the M simultaneous equations of the value determination

portion of the cycle. Schweitzer noted that if the policy

improvement w~n done on only on- state, the solution to

the new set of simultaneous equations I-. quite simply
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r

related to the solution of th)' cid set of simultaneous equa-

tions. By Judicious choice of the arbitrary initial policy,

the Initial solution to the simultaneous equations Is trivial.

Effectively, the set of equations need never be solved and

a major deterent to the use of the algorithm has been r emoved.

Schweitzer estimates that with his modification, Howard's

algorithm would be able to handle on the order of five thou-

-Sand des rete states.

Thus, dynamic programming techniques have been shown

to be of use in the determination of optimal steady state

policies associated with pArtially observable Markov processes.
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CHAPTEH IV

COIN CLUDING ;EK4RKS

The partially observable ;,hrkov process has been pi-e-

sented and some of its properties discussed. The primary

area of Investigation In this report was the selection of

a course of action !rom a set of alternatives using only

the Information about the system which is available from

tiie observable output;.

Dynamic programming techniques were shown to be of

use in the optimization of both transient and steady state

policies. While theoretically the optimization can always

be done, there is a definite computational limitation which

was discussed.

There are several extensions of this Investigation

that could be made. The concept of discounting of future

rewardn could be considered. The optimum placement of in-

vestzent dollars to Improve prediction abilities and a~erage

earninE5 could be investigated. In addition, time-variant

system parameters could be introduced.

The optimization technique used deals with a problem

of much higher dimensionality than that of the original

underlying process. A method is needed which will allow

solution of sequential decision problems beyond the scope

of those that can be handled by the technique presented in

this report.
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APPENDIX I

COMPUTEi 5OLUTICN FOLi ThE OP11MAL

TIME, DEPENDENT POLICY

In chapter two, equations for a two state process are

formulated. They are solved by this program for the case

where the decision-maker has available the options ofe

1) estimate statc I and act accordingly.
2) estimate state 2 and act accordingly.
3) use perfect information channel at added cost.

For the two state process the state of knowledge vector

s (n), s2 (n) is fully specified by sl(n) since s 2 (n) = 1-sl(n).

The program breaks s1 (n) (which can take any value from 0.0

to 1.0) into 51 points and calculates the maximum expected

utility of rewards, Fn(sAnIf), for each of the 51 points.

The initial values F°( j0) must be specified and then the

program calculates F I( ) by firding the maximubm of the

three possible options rewards. F 2(s2)) is then found

from F1(s(.L). This continues on up to n=n%,,, which is

specified by the person using the program. The output is

in the form of expected total utility of rewards at each of

the 51 points for each n from 1 to amaxplus the decision

D(n,k) to be made at each point k for each time n. This

decision is optimal basedon the criterion of maximizing the

expected utility of rewards.
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P.9Oicxi LISTING - VA.LUE*

D I MVENlNF1 ), I - ,k' 2, I2) F %f 2,.R( 2,) X( 51)
DIhENS ION PONE( 51 ,PTWO( 51) T0NE( 51),TTWOC51),LONE(31),LTWC( 51)
COMMO0N E F, T, i, X, POKNEPTWO, TONE, TTWO, LONE,Lr:",C

3FORMAT (5F1-.0-5)

HqEAD Z,Ftl,l),P(l,`),P(2,,(,)
RE AD .,*1,1.;,(II ,(1),rI(
A = 10.0
DO 4~ 1 1,53
F (111) =0.0

x(1) = 0. 0
00 6 L = 1. 50
M = L + 1

6xU~y) = X(L) + .01
DO 7 K =1, 51

PONIE(K) 0')(.0XK P(,>(,) (,1F(1)

PTW0(K) =1. 0 - PONE(K)
TONE CK)=(X(K)#.P(l,]I)*F(1,1)+(l. O-,A(K) )*P(2,1)*(F(l, 1))/PONE(K)

J=51
c0 IF t.T0NE''--(K) - XkJ)) ,9,99
8 J =Ji - 1

IF(J) 11,10,10
9 LONE(K) = J

11 J = 51
14 IF(TTWO(K)-X(J)) 13,12,12
13 J =J - 1

IF(J) ?,14.14
12 LTWO(K) = J
7CONTINUE4
PRINT l103,(i;ONE(j),J = 1,50)
PRINT 103,(P-rWO(J),J = 1,50)
PRINT 103,(TONE(J),J = 1,50)
PRINT 103,(TTWO(J),J = 1,50)
DO 100 N =2,11
M =N - 1
I1 LONE( 51)

SLOPE = (E(M,J,-E(M,I))/.02
7EST3 = %'TONE(5l)-X(I))i*SLOPE+E(M,I)
I =LTWO( 51)
J I= 11
SLOPE = (E(M ¶J)-E(M 1))1.02
TEST4 = (TTWO(51)-XI) )*SLOPE+E(1',.I)
TEST3 = (-A)+PONE( 51 -*~TEST3+P>TW0(_51 )*LTEST4
DO 99 K = 1,51
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I L LONE'( K
j: I

PASTI (TONE(K) - X(I))A*SLcPE+E(M,I)
I LTWG-(K)

SLOPE = EMJ-(,)/2
PAS T 2 = (TTWC(K)-X(I))ArSLOPE-4E(Mv,I)
PAST = PON-ECK)*PAST1 +PTWO(K)*-PAST2
TESTI = X(K)&ii(1,l)-(1.O-X(K) )4F(1,2)+PAST
TEST12 = (XKv?1)+ (1.0 -X(K))*,R(?,2)+ PAST
IF(TEST1-TEST2) 61,62,61"

61 IF(TEST7- - rESTJ) 63,64,64~
6z IF( -TEST1 - TE;ST3) 61,6s.65
63 E(N,i4) =TEST3

GO TO 99
64 E(N,K) = TEST2

3C TO 99
65 E(N,K) = TEST1
99 CONTINUE

100 C ONT I NIE
DO 101 1 1,11
L =I -1
PRINT 5, L

5 FOPMAT(2-7H EXPECTED EARNINGS AT LEVEL,2X,12)
101 PiINT 1Oj,(E(I,J),J = 1,50)
103 FORMAT(1OF1O.5)

CALL EXIT
END



APPENDIX II

COMPUTER SOLUTION FOR THE OPTIMAL SiSADY STAI.-: POLICY

In Chapter III an algorithm is presented which allows

determination of certain steady state policies associated

with partially observable •:arkov processes. Phat method Is

used in this program on the general two state proccss where

the decision-maker has available the options oft

1) estimate underlying Markov state 1 as the current
Markov state and act accordingly.

2) estimate underlying Markov state 2 as the current
Markov state and act accordingly.

3)' use perfect information channel at added cost.

For the two state process the state of knowledge

vector, s(n), is fully specified by s 1 (n) since s 2 (n)=l-s 1 (n).

The program breaks the continuous s 1 (n) into 51 points

and determines the optimal policy and associated relative

values and gain. The decision is optimal based on the

criterion of maximizing expected utility of rewards. Figure 1C

of Chapter III very adequately serves as a flow graph of this

program.
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Pr0GAG. LISTING - -POLICY-

]IMSN3ION NA(52),K(51),P(153,51),,Q(3,51),V(51),A(51,51),B(51)
COMMON NA,K,P,Q,V,A,P

C INIr:I.L POLICY VECTOR
NA(52) =15
DO 1 I 1-,20

1 K(1) = 2
DO --I -= 21,2

2 K(I) = 3
D = 26,51

3 K(I) -1
27 FORMAT (11F9.5)
51 FORMAT (6F9.5)

C FORM Q VECTOR
4 FORMAT (2F6.3)

52 FORMAT (7F6.3)
DO 53 J = 1,51

53 READ 4, Q(I,J),Q(2 T)

DO 5 J 1,51
5 Q(3,J) = 0.0

28 FORMAT (2H Q)
C FORM +P VECTOR

6 FORMAT (4F6.5)
DO 7 I = 1,153
DO 7 J = 1,51

7 P(IJ) = 0.0
9 FORMAT (17F4.3)

DO 200 I = 1,153
200 READ 9, (P(I,J),J = 1,51)

C FORM NA(I)
NA(1) = 0
DO 10 I = 1,51
J = I-1

10 NA(I) = NA(J) + 3
C FORM A AND B VECTORS

102 V(51) = 0.0
DO 11 I = 1,51
L = K(I)
LL = NA(I) + K(I)
B(I) = Q(L,I)
A(i,51) = 1.0
DO 11 J = 1,50

11 A(I,J) = (-P(LL,J))
DO 12 I = 1,50

12 A(I,I) = A(I,I) + 1.0
C CALL LINEAR EQN SUBROUTINE

SCALE = 1.0
50 FORMAT (3F9.5)

M = XSI!•QF(51,51,1,A,B,SCALE,V)
C PULL RESULTS
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GO T0 (13,14,14),M
13 DC b I = 1,51
16 V(i' = (I,

- A(51,1)
51) = 0.0

DO IOU 1 = 1,51
TEMP = -99999.
NTEMP 0
IMIN = NA(1) 4 1

IMAX - NA(I 1)
DO 17 M IMIN, IMAX
KALT = N - "M(1)
T-5T = Q(KkLT,i)
DO 1; J 1,51

18 TEST = TEST + P(M,J)•V(J)
TF'TLP( T - TEiMF) 17,?C, 1

21 NTEZI. = KALT
TEMP TgST
GO TO 17

20 IF(NTEMP - K(1)) 21,17,21
17 CONTINUE

IF(NTEMP - K(I)) 22,100,22
22 IrEH = 2

K(I) = NrEMP
100 CONTINUE

GO TO (101,102),ITER
C PRINT XUTPUr

I01 PHINT 23
23 FORMAT (16H DECISION VECTOR)
24 FQHMAf (5ýI2)

PRINT 24, (K(I),I=1,51)
PRINT 25

26 FORMAT (F9.5)
PRINT -6, G

25 FORMAT (16H GAIN AND VALUES)
70 FOGRMAT (IIF9.5)
71 FORKAr (7F9.5)

PRINT 70, (V(T),I = 1,11)
PRINT 70, (V(I),I = 12,22)
PRINT 70, (V(I) I = Nd33PRINT 70, (V(I),I 34 44,)
PRINT 71, (V(I),I = 45,51)
GO TO 103

14 PRINT 15
15 FORMAT (23H NO SOLUTION FOR VALUES)

103 CONTINUE
CALL EXIT
END

-75-



B.I L IPH AYPHY

I) Bharicha-hel, A ?*. Eflements of the Theory of Karkov
Processes and their ApMiaflons,,

2) Bellmar., Richard c., Dynamic Programmlng, Princeton,
University Press, 1957.

3) Bellman,I., and Dreyfus, z., Applied Dynamic Programmn:,
Princ-tor., 1962.

4) Drae, Alvin W., Uhservaticri of a Markov Process throuFhp
a No•sy Channel, Sc.D. TheslF, Dept. of Electrical
Engineering, M.I.1., May, 1962.

5) Howard, jonald A., Dynanic Inference, Technical heport
No. 10, Operations hesearch Center, M.I.T.,1964.

6) Howard, honald A., Dynamic Programming and Markov
Processes, Tezhnology Press, Cambridge, and
Wiley, New York, lq60.

7) Kclly, J., "A Ne• Interpretation of InformatIorn ;iate,"
Bell System Technical Journal, Vol. 35, PP 917-26,
July, I --

8) Kramer, J, 'Dvlc Lt., Partially Observable Markov Process,
Zc.D. Thesis, Dept. of Eiec'trical Engineering,
M.I.T., February, 1964.

9) kaiffa, H. and Schlaifer, R., Applied Statistical
Decision Theor Division of Research, Rarvard
Business School, 1961.

10) Schweitzer, Paul, Perturbation Theory and 'Iarkovian
Decision Processes, Sc.D. Thesis, Dept. of Physics,
M.I.T., 1965.

11) Stoopes, G., Study of a Noisy Markov Process, S.M.
Thesis, Dept. of Electrical Engineering, M.I.T.,
June, 1962.

12) Karlin, S., Some Random Walks Arising in Learning
Models, Pacific Journal of M4athematics, Vol. ), 1953.

- 76 -



Security Classification
DOCUMENT CONTROL DATA • R&D

(Security classification of title. body of abstract and Indexlng annotation must be entered when the overall report is claseitlad)

I,- ORIGINATING ACTIVITY (Corporate author) as. REPORT SECURITY C L.ASSIFICATION

MIT Center for Operations Research Unclassified
77 Massachusetts Avenue 2b. GRoUP
Cambridge, Massachusett 02139

3. REPORT TITLE

Optimum Policies for Partially Observable Markov Systems

4. DESCRIPTIVE NOTES (Type of report and Inclusive dates)

Technical Report No. 18 of the MIT Operations Research Center
S. AUTIHOR(S) (Leet nane, firt name. initial)

Kakalik, James Steven

a. REPORT DATE 70. TOTAL NO. OF PAGES 7b. NO. OPP REF@

October, 1965 761 12
Sa. CONTRACT OR GRANT NO. Se. ORIGINATORS0 REPORT NUMBER(S)

Nonr-3963 (06) (NR 276-004) Same as 4.
b. PROJECT NO.

c, Contract No. 9b. HKR,.PoRT MO(S (Any othe,.wb.,e thtmay be ee.i4d
DA-31-124-ARO-D-209 

_b

d.

10. AVA ILASILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC.

i I • •rr2• i me" 12. SPONSORING MILITARY ACTIVITY (for 8b)ponsoring MUary Activity J.S.Army Research Office
for 8a: Office of Naval Res. Box CM, Duke Station

MethQdology DivNaval AnalysisGO Durham, North Car.olina
Wasninqto , D.C. 20360

13. ABSTRACT

The problem considered is the monitoring of a discrete-
state Markov process through a noisy channel with associated
costs. Dynamic programming techniques are used to establish
the optimal monitoring decision policies for both transient
and steady-state situations. Examples are included.

DD ,RM .1473 .......
Security Classification



Securityt Clsssification________________
14LINK A LINK( B Lir4KC

4,KEY WORDS MOLE WT ROLE W? RoL.E WT

Dynamic Programming

Markov Processes

Optimal Control

Statistical Decision Theory

i• INSTRUCTIONS

!'"1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard statements
Jmm of the contrsctor, subcontractor, grantee, Department of De- such as:

f" ense activity or other organization (corporate author) issuing (1 "Qaiedrqstsmyobincpsofhi
i• the report, report from DDC."

ii2a. REPORT SECUMTY CLASSIFICATION: Enter the over- (2) "Foreign announcement and dissemination of this
iNall security classification of the report. Indicate whether

"Restricted Data" •.a included. Marking is to be in accord- eotb D sntatoie.
ance with appropriate security regulations. (3) "U. S. Government agencies may obtain copies of

26. ROU: Auomaic owngadig i~speifid inDoDDi-this report directly from DDC. Other qualified DDC

rective 5200.1I0 and Armed Forces Industrial Manual. Enterusrshlreetthog
the group number. Also, when applicable, show that optional .
markings have been used for Group 3 and Group 4 'as author- (4) "U. S. military agencies may obtain~copies of this
ized. report directly from DDC. Other qualified users

:3. F<EPORT TITLE: Enter the complete report title in all shall request through
.•capital letters. Titles in all cases should be unclassified. ,S If a meaningful title cannot be selected without classificsa-•'

tion, show title classification in all capitals in parenthesis ! (5) "All distribution of this report is controlled. Qua]-
immediately following the title. ifiled DDC users shall request through

4. DESCRIPTIVE NOTES: If appropriate, enter the type of __________"________

rep~ort, e.g., interim, prog~ress, summery, annual, or final. If the report has been furnished to the Office of Technical
Give the inclusive dates when a specific reporting period is Services, Department of Commerce, for sale to the public, indi-
covered. cate this fact and enter the price, if known.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on 11. SUPPLEMENTARY NOTES: Use for additional explana-
or in the report. Enter tast name, first name, middle initial, tory notes.
If military, 'show rank end branch of service. The name of
the principal .,uthor is an absolute minimum requirement. 12. SPONSORING MILITAR~Y ACTIVITY: Enter the name of

the departmental project office or laboratory sponsoring (pay-
6. REPORT DATE.-. Enter the date of the report as day, jng for) the research and development. Include address.
month, year; or month, year. If more than one date appears 1.ASRC:Etra btatgvn re n ata
on the report, use date of publication,.3 BTAT ne nasratgvn re n ata

summary of the document indicative of the report, even though
7a. TOTAL NUMBER OF PAGES: The total page count it may also appear elsewhere in the body of the technical re-
should follow normal pagination procedures, i.e., enter the port. If additional space is required, a continuation sheet shall
number of pages containing information. be attached.

7b. NUMBER OF REFERENCES: Enter the total number of It is highly desirable that the abstract of classified reports
references cited in the report. be unclassified. Each paragraph of the abstract shall end with

-- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-
'-the applicable number of the contract or grant under which formation in the paragraph, represented as (TS), (S), (C), or (U).

the report was written. There is no limitation cn the length of the abstract. How.

8b, 8:, & 8d. PROJECT NUMBER: Enter the appropriate ever, the suggested length is from 150 to 225 words.
military department identification, such as project number, 14KE WO S: eywrsaetcnalymnigutrs
subprojeact number, system numbers, task number, etc.14KYWOD:eywrsretcnalymnigutrs

or short phrases that characterize a report and may be used as
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- index entries for cataloging the report. Key words must be
cila report number by which the document will be identified selected so that no security classification is required. Idents-
and controlled by the originating activity. This number must fiers, such as equipment model designajion, trade name, military
be unique to this report, project code name, geographic location, may be used as key
i'b. OTHER REPORT NUMBER(,S): If the report has been words but will be followed by an indication of technical con-
assigned any other report numbers (either by the originator text. The assignment of links, rules, and weights is optional.
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

r--i;GPO 58,. 551t

i Security Classification


